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Abstract:   
 
Recent brain imaging studies have shown that different spatial patterns of neural 
activation are associated with thinking about different semantic categories of words and 
pictures (e.g., tools, buildings, animals).  As a next step we seek a general theory capable 
of predicting the neural activity associated with arbitrary words not yet included in 
experiments.  We present here the first such predictive theory, in the form of a 
computational model that is trained using a combination of data from a trillion-word text 
corpus, and observed fMRI data associated with viewing several dozen concrete nouns.  
Once trained, the model predicts fMRI activation for thousands of other concrete nouns 
in the text corpus, with highly significant accuracies over the 60 nouns for which we 
currently have fMRI data.   
 
 
 
 
 
 
One sentence summary:  
 
We present the first computational model capable of predicting observed fMRI activity 
produced when humans think about an arbitrary concrete noun, along with experimental 
results showing strong prediction accuracy over the 60 nouns for which we have fMRI 
data. 
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The question of how the human brain represents and organizes conceptual knowledge has 
been studied by many scientific communities.  Neuroscientists using brain imaging 
studies (1-9) have shown that distinct spatial patterns of fMRI activity are associated with 
viewing pictures of certain semantic categories including animals, tools, and buildings.  
Linguists have characterized different semantic roles associated with individual verbs, as 
well as the types of nouns that can fill those semantic roles (e.g., VerbNet (10) and 
WordNet (11, 12)).  Computational linguists have analyzed the statistics of very large 
text corpora and have demonstrated that a word’s meaning is captured to some extent by 
the distribution of words and phrases with which it commonly co-occurs (13-17).  
Psychologists have studied word meaning through feature norming studies (18) in which 
participants are asked to list the features they associate with various words, revealing a 
consistent set of core features across individuals and suggesting a possible grouping of 
features by sensory/motor modalities.  Researchers studying semantic deficits associated 
with brain damage have found that people who lose the ability to name a particular 
animal will often lose the ability to name other animals as well, but will not lose the 
ability to name specific artifacts or fruits/vegetables, and that more generally the loss of 
ability to name items in one of these three categories does not imply naming difficulties 
in the other two categories (19-21).  
 
This variety of experimental results has led to competing theories of how the brain 
encodes meanings of words and knowledge of objects, including theories that meanings 
are encoded in sensory-motor cortical areas (22, 23), and theories that they are instead 
organized by semantic categories such as living and non-living objects (18, 24).   While 
these competing theories sometimes lead to different predictions (e.g., of which naming 
disabilities will co-occur in brain damaged patients), they are primarily descriptive 
theories that do not attempt to predict the specific brain activation that will be produced 
when a human subject reads a particular word or views an image of a particular object. 
 
We present here the first theory that makes directly testable predictions of the fMRI 
activity associated with thinking about arbitrary concrete nouns, including nouns for 
which no fMRI data are currently available.  More generally, we present a paradigm for 
representing such theories in the form of computational models, and for training them 
using a combination of fMRI data and data from a trillion-token corpus of text that 
captures typical use of English words.   We describe the use of this approach to train 
several competing computational models based on different assumptions regarding the 
primitive features that underlie the encoding of meaning.  We present experimental 
evidence showing that the best of these models is capable of predicting fMRI neural 
activity well enough that it can successfully match words it has not yet encountered to 
their previously unseen fMRI images with accuracies far above chance levels.  These 
results establish for the first time a direct relationship between the statistics of word co-
occurrence in text, and the neural activation associated with thinking about word 
meanings.   
 
 
 
 



www.manaraa.com

 3

APPROACH 
 
We employ a trainable computational model that predicts the neural activation for any 
given stimulus word w in a two-step process shown in Figure 1.  Given a stimulus word, 
w, the first step encodes the meaning of w as a vector of intermediate semantic features 
computed from the occurrences of stimulus word w within a trillion-token text corpus 
(25) that captures the typical use of words in English text.   For example, one 
intermediate semantic feature might be the frequency with which w co-occurs with the 
verb “hear.” The second step predicts the neural fMRI activation at every voxel location 
in the brain, as a weighted sum of neural activations contributed by each of the 
intermediate semantic features.  More precisely, the predicted activation yv at voxel v in 
the brain for word w is given by 
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where fi(w) is the value of the ith intermediate semantic feature for word w, n is the 
number of semantic features in the model, and cvi is a learned scalar parameter that 
specifies the degree to which the ith intermediate semantic feature activates voxel v.  This 
equation can be interpreted as predicting the full fMRI image across all voxels for 
stimulus word w as a weighted sum of images, one per semantic feature fi.  These 
semantic feature images, defined by the learned cvi, constitute a basis set of primitive 
images that model the brain activation associated with different semantic components of 
the input stimulus words. 

----------------------- 
Insert Figure 1 here 
----------------------- 

 
To fully specify a model within this computational modeling framework, one must first 
define a set of intermediate semantic features f1(w) f2(w) … fn(w) to be extracted from the 
corpus statistics.  In this paper we define intermediate semantic features in terms of 
corpus co-occurrence statistics of the input stimulus word w with a particular other word 
(e.g., “taste”) or set of words (e.g., “taste,” “tasted” or “tastes”).  Once the semantic 
features fi(w) are specified, one must also specify the parameters cvi that define the neural 
signature contributed by the ith semantic feature to the vth voxel.  This is accomplished by 
training the model using a set of observed fMRI images associated with known stimulus 
words.  Each training stimulus wt is first re-expressed in terms of its feature vector < 
f1(wt) … fn(wt) >, and multiple regression is then used to obtain maximum likelihood 
estimates of the cvi values; that is, the set of cvi values that minimize the sum of squared 
errors in reconstructing the training fMRI images   
 
Once trained, the resulting computational model can be used to predict the full fMRI 
activation image for any other word found in the trillion-token text corpus, as shown in 
Figure 2A.  Given an arbitrary new word wnew the model first extracts the intermediate 
semantic feature values < f1(wnew) … fn(wnew) > from the corpus statistics database, then 
applies the above formula using the previously learned values for the parameters cvi.  The 
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trained computational model thus embodies a precise theory that predicts the fMRI 
activation associated with arbitrary words found in the trillion-token corpus.  The 
computational model and corresponding theory can be directly evaluated by comparing 
their predictions for words outside the training set to observed fMRI images associated 
with those words.  Different predefined sets of intermediate semantic features can be 
directly compared by training competing models and evaluating their prediction 
accuracies. 

----------------------- 
Insert Figure 2 (A and B) here 

----------------------- 
 
This computational modeling framework is based on two key theoretical assumptions.  
First, it assumes the semantic features that distinguish the meanings of arbitrary concrete 
nouns are reflected in the statistics of their use within a very large text corpus.  This 
assumption is drawn from the field of computational linguistics where the distribution of 
words that co-occur with word w is often used to approximate the meaning of w (e.g., 14-
17).  Second, it assumes that the brain activity observed when thinking about any 
concrete noun can be derived as a weighted linear sum of contributions from each of its 
semantic features.  While the correctness of this linearity assumption is debatable, it is 
consistent with the widespread use of the general linear model in fMRI analysis (e.g., 26), 
and with its underlying assumption that fMRI activation often reflects a linear 
superposition of contributions from different sources.  Our theoretical framework does 
not take a position on whether the neural activation encoding meaning is localized in 
particular cortical regions – it considers the entire cortex and allows the training data to 
determine whether and how neural activation is localized.  
 
EXPERIMENTS 
 
To train and evaluate this computational model, fMRI data were collected from a set of 
11 participants who viewed 60 different word-picture pairs (Figure 3) presented six times 
each, with the stimulus sequence permuted on each presentation.  Participants were asked 
to think about the properties of the item they were viewing.  Data were acquired on a 
Siemens Allegra 3.0T scanner at the Brain Imaging Research Center (BIRC), Carnegie 
Mellon University and the University of Pittsburgh. The study was performed with a 
gradient echo, EPI sequence with TR = 1000 ms, TE = 30 ms and a 60° flip angle. 
Seventeen oblique-axial slices were imaged; each slice was 5-mm thick with a gap of 1-
mm between slices. The acquisition matrix was 64 x 64 with 3.125-mm x 3.125 x 5-mm 
voxels  Images were corrected for slice acquisition timing, motion-corrected and 
normalized to the Montreal Neurological Institute (MNI) template within the SPM2 
package (SPM2 (Wellcome Department of Cognitive Neurology, London, UK), and 
anatomically defined regions of interest (ROIs) were automatically labeled (27). Data 
from two participants were rejected due to excessive head motion.  Separate models were 
trained for each of the other 9 participants.  To train a model, the data were first 
processed to create a single image of mean activity for each of the 60 stimulus items, by 
averaging over the images collected at 4,5,6 and 7 seconds following stimulus onset for 
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each of the six presentations of the item.  The resulting 60 mean images were then 
normalized by subtracting from each the mean of all 60 images.  
 

----------------------- 
Insert Figure 3 here 
----------------------- 

 
Alternative computational models were trained based on different sets of intermediate 
semantic features.  Each model was trained and evaluated using a cross validation 
approach, in which the model was repeatedly trained using only 58 of the 60 available 
stimulus items, then tested using the two items that had been left out.  On each iteration, 
the trained model was tested by giving it the two word stimuli it had not yet seen (w1 and 
w2), plus their observed fMRI images (i1 and i2), then requiring it to predict which of the 
two novel images was associated with which of the two novel word stimuli.  The trained 
model was first used to create predicted image p1 for word w1 and predicted image p2 
for word w2.   It then decided which was a better match: (p1=i1 and p2=i2) or (p1=i2 and 
p2=i1), by choosing the image pairing with the best similarity score.  The similarity score 
between a predicted and observed image was calculated as the cosine similarity between 
the two images (the dot product of the images represented as vectors normalized to unit 
length), and the similarity for the two image pairs was taken to be the sum of the two 
similarity scores.   This leave-two-out train-test procedure was iterated 1770 times, 
leaving out each of the possible word pairs.  The expected accuracy in matching the two 
left-out words to their left-out fMRI images is 0.50 if the matching is performed at 
chance levels.  A label permutation test was performed to determine that an accuracy of 
0.612 for a single participant is statistically significant at p<0.05. 
 
We trained and tested a variety of computational models based on different sets of 
intermediate semantic features.  To be effective, the set of semantic features must 
simultaneously encode the wide variety of semantic content of the input stimulus words, 
and factor the observed fMRI activation into more primitive components that can be 
linearly recombined to successfully predict the fMRI activation for arbitrary new stimuli.  
Motivated by existing conjectures regarding the centrality of sensory-motor features in 
neural representations of objects (e.g., 18, 28), we designed a set of 25 semantic features 
defined by 25 verbs: see, hear, listen, taste, smell, eat, touch, rub, lift, manipulate, run, 
push, fill, move, ride, say, fear, open, approach, near, enter, drive, wear, break, and 
clean.   Notice these verbs generally correspond to basic sensory and motor activities, 
actions performed on objects and actions involving changes to spatial relationships.  For 
each verb, the value of the corresponding intermediate semantic feature is the normalized 
co-occurrence count of the input stimulus word w with any of three forms of the verb 
(e.g., “taste” or “tastes” or “tasted”) over the text corpus.  One exception was made, for 
the verb "see." Its past tense was omitted because "saw" is one of our 60 stimulus nouns.  
Normalization consists of scaling the vector of 25 feature values to unit length.   
 
A separate computational model was trained for each of the nine participants, using the 
above set of 25 semantic features.  The cross-validated accuracies in matching two 
unseen word stimuli to their unseen fMRI images for these nine trained models were 
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0.773, 0.707, 0.679, 0.619, 0.616, 0.584, 0.571, 0.542, and 0.473.  Thus, five of the nine 
participant-specific models exhibited accuracies significant at p<0.05, and the most 
accurate of these models succeeded in distinguishing pairs of previously unseen words in 
over three quarters of the 1770 cross-validated test cases.  The discussion below focuses 
in greater depth on the three most accurate trained models, for participants P1, P2 and P3.   
 
Visual inspection of the predicted fMRI images produced by the models trained for P1, 
P2 and P3 shows that these predicted images frequently capture significant aspects of 
brain activation associated with stimulus words outside the training set.  An example is 
shown in Figure 2B, where the model was trained on 58 of the 60 stimuli for participant 
P1, omitting “celery” and “airplane.”  Note that although the predicted fMRI images for 
“celery” and “airplane” are imperfect, they capture substantial components of the 
activation actually observed for these two stimuli.  
 
Given that the 60 stimuli are grouped into 12 semantic categories, it is interesting to ask 
whether the successful predictions follow solely from the ability of the model to 
distinguish words from different categories (e.g., “celery” belongs to the category “food” 
whereas “airplane” belongs to “vehicles.”), or whether the model can also predict 
nuances in brain activation that distinguish semantically similar words belonging to the 
same category (e.g., “celery” versus “corn”).  One way to answer this question is to 
measure the prediction accuracy over only those pairs of held-out test words belonging to 
the same semantic category.   These within-category prediction accuracies for 
participants P1, P2 and P3 are 0.667, 0.667, and 0.533 (mean 0.622), above the 0.566 
mean accuracy that corresponds to p<0.05 according to a label permutation test.  For two 
of these three participants, the trained model distinguishes highly similar word pairs it has 
not previously observed, in two thirds of the test cases.  In contrast, the cross-class 
accuracies (considering only word pairs from distinct classes) for these three participants 
are 0.781, 0.710, and 0.689 (mean 0.727). 
 
It is also interesting to ask whether this approach can learn to make predictions for words 
in new semantic categories not included at all in the training set.  We tested this by 
retraining the models for participants P1, P2 and P3, this time removing from the training 
set all examples belonging to the same semantic category as either of the two held-out 
test words (e.g., when testing on “celery” versus “airplane” we removed every food and 
vehicle stimulus from the training set, training on only 50 words).   In this case, the cross-
validated prediction accuracies were 0.614, 0.631 and 0.555.  Thus, the trained model can 
to some degree generalize to words semantically distant from those on which it was 
trained, suggesting that the semantic features and their learned neural activation 
signatures span a diverse semantic space.   
 
A second method for evaluating the model is to examine the learned basis set of fMRI 
signatures for the 25 verb-based semantic features.  The learned signatures for the 
semantic features "eat," "listen," and "touch" for participant P1 are shown in Figure 4.  As 
shown there, the learned fMRI signature for the semantic feature "eat" exhibits strong 
activation in gustatory cortex, the signature for "listen" exhibits activation in cortical 
regions associated with audition, and the signature for "touch" exhibits activation in 
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somatosensory regions. More generally, averaging across participants P1, P2 and P3, 
several features exhibit activation in cortical regions associated with the sensory input or 
activity they describe:  The signature for “listen” exhibits activation in auditory and 
language processing cortical areas (Left pars triangularis, insula, and posterior superior 
temporal gyrus).   The signatures for “touch,” “push,” and “rub” each exhibit activation 
in somatosensory and motor regions (Right postcentral and precentral).  The signature for 
“fear” generates activation in areas including anterior and posterior cingulate, and to a 
lesser degree the amygdala and hippocampus.  The signature for “move” generates 
significant activation in many areas of extrastriate cortex,  calcarine sulcus, and superior 
parietal and right intraparietal sulcus.  The signature for “open” exhibits activation in the 
left and right fusiform gyrus.  Despite these correspondences, some feature signatures do 
not predict activation in cortical regions associated with their purported function (e.g., the 
signature for “smell” does not predict strong activation in olfactory cortex). 
 

----------------------- 
Insert Figure 4 here 
----------------------- 

 
Consider next the degree of similarity of the learned feature signatures for different 
participants. Figure 5 shows the signatures for "ride" and “near” for participants P1, P2 
and P3.  Despite the fact that these three signatures are components of models trained 
independently for each participant, there is a striking similarity across participants, as 
there is for many of the learned feature signatures.  Notice that for each of the three 
participants, the learned signature for “ride” shows activation in extrastriate cortex (at the 
top of the image, corresponding to the posterior cortex) whereas the signature for “near” 
does not.   The signatures for “ride” and “near” both exhibit activity in left and right 
fusiform in each of the three models, but in all three participants the fusiform activation is 
more posterior for “ride” and more anterior for “near.”  The discovery of this pattern 
independently in each of the three participants suggests that this regularity captures some 
aspect of semantic representations that may hold across many individuals.  More 
generally, the similarity in many of the learned feature signatures across models provides 
evidence in support of the conjecture that semantic representations are similar across 
individuals, and that our trained theory captures some of these similarities. 
 

----------------------- 
Insert Figure 5 here 
----------------------- 

 
Given the success of this set of 25 intermediate semantic features motivated by the 
conjecture that semantic primitives are related to sensory-motor verbs, it is natural to ask 
how this set of intermediate semantic features compares to alternatives.  To explore this 
we trained and tested models using 300 different randomly generated sets of semantic 
features, each defined by 25 randomly drawn words from the 5000 most frequent words 
in the text corpus, excluding the 60 stimulus words as well as the 500 most frequent 
words (which contain many function words and words without much specific semantic 
content, such as "the" and “have”).    A total of 300 random features sets were generated, 
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and for each feature set models were trained for each of the three participants P1, P2 and 
P3.  The prediction accuracy for held-out words averaged across these three participants 
was measured for each of the 300 sets of semantic features, and the distribution of 
resulting accuracies is shown in the blue histogram in Figure 6.  The mean accuracy over 
these 300 feature sets is 0.553, the standard deviation is 0.039, and the maximum 
accuracy achieved is 0.655.   The fact that the mean accuracy is greater than 0.50 
suggests that there are many feature sets that can capture some of the semantic content of 
the 60 stimulus words and some of the regularities in the corresponding brain activation.  
However, among these 300 feature sets, none came close to the 0.72 mean accuracy of 
our manually generated feature set (shown by the red item in the histogram figure).  This 
result suggests the set of features defined by our sensory-motor verbs are somewhat 
unique in capturing regularities in the neural activation encoding the semantic content of 
words in the brain. 
 

----------------------- 
Insert Figure 6 here 
----------------------- 

DISCUSSION 
 
To our knowledge, this is the first work to establish a direct relationship between the 
fMRI activity observed when a person thinks about a concrete object, and the statistical 
properties of the corresponding word in a very large text corpus.  It is also the first work 
to offer a testable, generative theory of brain activation associated with thousands of 
concrete nouns.  This paradigm is based on the assumption that the meaning of a word 
can be approximated by a set of semantic features corresponding to statistics describing 
the distribution of that word in a large corpus, and that these semantic features 
correspond to stable neural signatures whose weighted linear combinations accurately 
predict the neural activations associated with arbitrary nouns.  The success of the model 
based on 25 sensory-motor verbs (compared to alternative models based on randomly 
sampled sets of 25 semantic features) lends credence to the conjecture that neural 
representations of concrete nouns are in part grounded in sensory-motor features.  
However, the learned signatures associated with the 25 intermediate semantic features 
also exhibit significant activation in brain areas not directly associated with sensory-
motor function, including frontal regions.  Thus, it appears that the basis set of features 
that underlie neural representations of concrete nouns involves much more than sensory-
motor cortical regions. 
 
This research is analogous in some ways to recent research analyzing fMRI activation 
associated with picture stimuli, in terms of visual features of the pictures (9,29).  Our 
work differs in that we employ text corpus features to capture semantic aspects of the 
stimulus, rather than visual features that capture perceptual aspects.  It also differs in that 
our computational model is capable of predicting fMRI activation for stimuli beyond the 
training set.  In future work it may be interesting to jointly analyze perceptual image 
features and semantic corpus-derived features.  It may also be productive to employ more 
sophisticated text corpus properties than simple word co-occurrence, and to develop 
algorithms to automatically derive optimal basis sets of semantic features. 
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Although at first glance it may seem enigmatic that brain activity and language corpora 
should have much to say about each other, they are inherently linked by the brain system 
that generates both types of data.  This new research approach opens the possibility of 
exploring a large range of human semantic representation issues by combining brain 
imaging with language corpus studies. 
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Supporting online material: 

Text corpus data.  The text corpus data was originally provided by Google Inc., and is 
available online at 
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13.  It consists 
of a set of n-grams (sequences of words and other text tokens) ranging from unigrams 
(single tokens) up to five-grams (sequences of five tokens), along with counts giving the 
number of times each n-gram appeared in a large corpus containing over a trillion total 
tokens.  The corpus consisted of publicly available English text web pages.  N-grams 
occurring fewer than 40 times were not provided.  We used this data to calculate co-
occurrence counts for words occurring within five tokens of one another.  These are the 
co-occurrence counts used in all experiments reported in this paper. 
 
 Statistical significance.  Statistical significance of cross-validated predication 
accuracies were calculated using a permutation test in which the labels of the words were 
randomly permuted.  For each of 188 permutations, models were trained for participants 
P1, P2 and P3.  The mean accuracy of these three models, µavg, was measured using our 
cross validation method for each permutation.  The resulting empirical distribution over 
µavg had a mean of 0.4996 and standard deviation of 0.0403.  Modeling this as a normal 
distribution, values of µavg above 0.566 correspond to p<0.05.  Similar permutation tests 
on the average within-class accuracies show three-participant average accuracies above 
0.567 are significant with p<0.05.  Similarly, permutation tests show that single-
participant accuracies above 0.612 (0.587) and single-participant within-class accuracies 
above 0.623 (0.595) are significant at p<0.05 (p<0.10). 
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Figure Legends 
 

 

Figure 1. Form of the theory for predicting fMRI activation for arbitrary noun 

stimuli.  fMRI activation is predicted in a two-step process.  The first step encodes the 

meaning of the input stimulus word in terms of intermediate semantic features whose 

values are extracted from a large corpus of text exhibiting typical word use.  The second 

step predicts the fMRI image as a linear combination of the fMRI signatures associated 

with each of the intermediate semantic features. 

 

Figure 2. Predicting fMRI images for given stimulus words.  (A) Forming a 

prediction for the stimulus word “celery” after training on 58 other words. Data 

from the text corpus is used to assign coefficients to the 25 verb-based semantic features; 

the coefficient of “eat” for stimulus word “celery” is large (0.84) because “eat” co-occurs 

frequently with “celery” in the corpus.  The predicted activation for the stimulus word is 

a linear combination of the learned fMRI signatures for each semantic feature, weighted 

by its corpus-derived coefficient.  Figure 2 shows just one horizontal slice (z=7 in MNI 

space) of the predicted 3-dimensional image.  (B)  Predicted and observed fMRI 

images for “celery” and “airplane” after training using 58 other words.  Though 

imperfect, predictions capture aspects of observed activity. The long red and blue streaks 

near the top (posterior region) of the predicted and observed images are the left and right 

fusiform gyri.   
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Figure 3. Presentation and set of exemplars used in the experiment. Participants were 

presented 360 word-picture pairs of common concrete nouns, consisting of 60 distinct 

objects from 12 categories, each presented six times.  A slow event-related paradigm was 

followed in which the stimulus was presented for 3s, followed by a 7s fixation period. 

 

Figure 4. Learned voxel activation signatures for 3 of the 25 semantic features, for 

participant P1.  Notice the semantic feature associated with the verb “eat” activates 

Right pars opercularis (arrow), part of gustatory cortex.  The semantic feature associated 

with “listen” activates the left posterior superior temporal sulcus,  superior extrastriate, 

insula and pars triangularis (arrows) associated with audition and language processing.  

The semantic feature for the verb “touch” activates right post-central sulcus and right 

inferior parietal lobule (arrow) the location of primary somatosensory cortex. 

 

Figure 5. fMRI signatures for the semantic features “ride” and “near” for three 

participants, and the mean signature over all three (for slice z=7 in MNI space).  

Notice a consistent pattern in the three independently trained models: “ride” shows more 

activation in posterior portions of left and right fusiform, whereas “near” shows more 

activation in anterior fusiform.  In addition, “ride” consistently shows more activation in 

left and right inferior extrastriate. Top of image is posterior. 

 

Figure 6. Histogram shows in blue the accuracy of 300 trained computational 

models utilizing different intermediate semantic features.  Accuracy is the mean 

accuracy of models trained independently for participants P1, P2 and P3.  Each model is 
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based on 25 words chosen at random from the 5000 most frequent words, excluding the 

500 most frequent words and the stimulus words.   The best of these 300 random model 

has accuracy substantially below the 0.720 accuracy of our 25 manually chosen sensory-

motor verbs (shown in red). 
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Figure 2a (above) and 2B (below) 
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Figure 3
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Figure 4
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Figure 5
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